‎Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter‎ ‎space or anti-de Sitter space

Authors

  • J. Chen School of Mathematics‎ ‎and Information Science‎, ‎Xianyang Normal University‎, ‎Xianyang‎, ‎712000‎, ‎Shaanxi‎, ‎P‎. ‎R‎. ‎China
  • S. Shu School of Mathematics‎ ‎and Information Science‎, ‎Xianyang Normal University‎, ‎Xianyang‎, ‎712000‎, ‎Shaanxi‎, ‎P‎. ‎R‎. ‎China
Abstract:

‎Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and‎ ‎oriented spacelike hypersurface in a de Sitter space or an anti-de‎ ‎Sitter space‎, ‎$S$ and $K$ be the squared norm of the second‎ ‎fundamental form and Gauss-Kronecker curvature of $M^n$‎. ‎If $S$ or‎ ‎$K$ is constant‎, ‎nonzero and $M^n$ has two distinct principal‎ ‎curvatures one of which is simple‎, ‎we obtain some‎ ‎characterizations of the Riemannian products‎: ‎$S^{n-1}(a) times‎ ‎H^{1}(sqrt{a^2-1})$‎, ‎or $H^{n-1}(a) times H^1(sqrt{1-a^2})$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

‎spacelike hypersurfaces with constant $s$ or $k$ in de sitter‎ ‎space or anti-de sitter space

‎let $m^n$ be an $n(ngeq 3)$-dimensional complete connected and‎ ‎oriented spacelike hypersurface in a de sitter space or an anti-de‎ ‎sitter space‎, ‎$s$ and $k$ be the squared norm of the second‎ ‎fundamental form and gauss-kronecker curvature of $m^n$‎. ‎if $s$ or‎ ‎$k$ is constant‎, ‎nonzero and $m^n$ has two distinct principal‎ ‎curvatures one of which is simple‎, ‎we obtain some‎ ‎charact...

full text

Spacelike hypersurfaces in de Sitter space

In this paper, we study the close spacelike hypersurfaces in de Sitter space. Using Bonnet-Myer’s theorem, we prove a rigidity theorem for spacelike hypersurfaces without the constancy condition on the mean curvature or the scalar curvature. M.S.C. 2010: 53C40, 53B30.

full text

Super algebra and Harmonic Oscillator in Anti de Sitter space

The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...

full text

Weingarten spacelike hypersurfaces in a de Sitter space

We study some Weingarten spacelike hypersurfaces in a de Sitter space S 1 (1). If the Weingarten spacelike hypersurfaces have two distinct principal curvatures, we obtain two classification theorems which give some characterization of the Riemannian product H(1−coth ̺)× S(1 − tanh ̺), 1 < k < n − 1 in S 1 (1), the hyperbolic cylinder H(1 − coth ̺) × S(1 − tanh ̺) or spherical cylinder H(1 − coth ̺)×...

full text

Spacelike hypersurfaces in de Sitter space with constant higher-order mean curvature

ing from (2.6), we obtain that ∫ M ( H1Hr −Hr+1 〈N ,a〉dV = 0. (3.1) We know from Newton inequality [2] that Hr−1Hr+1 ≤ H2 r , where the equality implies that k1 = ··· = kn. Hence Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr−1−Hr ) . (3.2) It derives from Lemma 2.1 that 0≤H1/r r ≤H1/r−1 r−1 ≤ ··· ≤H1/2 2 ≤H1. (3.3) Thus we conclude that Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr1 −Hr ≥ 0, (3.4) and if r ≥ 2, the equalities h...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 41  issue 4

pages  835- 855

publication date 2015-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023